
VIRTUAL COMPUTING

Da Vinci
For Technical Computing

Users Manual

Shaheen Hoque

11/25/2022

Developed by Shaheen Hoque, Da Vinci is a Graphical Application that provides an integrated
environment where Hyper scripts can be edited and run. It also provides tools to process data,
produce plots, and format texts. In addition, it includes a file browser.

Contents

Table of Contents
1 Introduction ... 4

2 Installation... 4

2.1 Downloading .. 4

2.2 Installation .. 7

2.3 Directories .. 7

2.3.1 Application for PC .. 7

2.3.2 ldv ... 7

2.3.3 ldv\bin ... 7

2.3.4 ldv\doc... 8

2.3.5 ldv\script ... 8

2.3.6 ldv\config .. 10

2.3.7 ldv\config\startup .. 10

2.3.8 Application for Mac .. 10

3 Starting .. 11

3.1 For PC .. 11

3.2 For Mac .. 11

4 Graphical User Interface (GUI) .. 11

4.1 Main Menu Bar .. 12

4.2 Main Toolbar .. 17

4.3 App Pane .. 17

4.4 System Pane ... 19

4.4.1 Console Window ... 19

4.4.2 Directory Window .. 20

4.4.3 Workspace Window .. 20

4.4.4 IDE Log Window .. 20

4.5 Properties Pane ... 21

4.5.1 Command History ... 21

4.5.2 Selected Object ... 21

4.6 Document Plane ... 28

4.6.1 App Frames ... 28

4.7 Dialog Boxes .. 30

5 Text User Interface (TUI) ... 36

6 Using LDV .. 37

6.1 Working with Document .. 37

6.1.1 New Document ... 37

6.1.2 Opening Document ... 37

6.1.3 Closing Document .. 38

6.1.4 Saving Document .. 38

6.2 Using Console and Command History ... 39

6.3 Using Apps ... 43

Utility Apps ... 43

6.3.1 Using Workspace App .. 43

6.3.2 Using File Explorer App ... 46

Document Component Apps ... 50

Common App Menu Bar ... 50

6.3.3 Using Text App ... 54

6.3.4 Using Table App ... 59

6.3.5 Using Script App... 83

6.3.6 Using Plot App .. 85

6.3.7 Console ... 121

6.4 Saving a Document .. 122

6.4.1 Saving app documents .. 123

1 Introduction

Leonardo Da Vinci (LDV) software can be used to perform technical computations such as

analysis, simulation, post-processing, and visualization. It consists of a graphical Integrated

Development Environment (IDE), an object-oriented scripting language named Hyper, numerical

function libraries for math, and 2D and 3D plotting tools. LDV is written in Java.

The scripting language, Hyper, is a general-purpose object-oriented interpreted scripting

language with an emphasis on technical computation. Hyper combines powerful object-oriented

programming (OOP) with an easy-to-use interpretive environment. Hyper can be used in two

different modes: interactive and batch script. The interactive mode has some shell-like

commands (similar to Linux/Unix/DOS) which provide utility functions. In addition to the

scripting, programs can also be written in Java, compiled, and imported into the Hyper's

interpretive environment. The imported classes in the compiled java binary can be accessed as

easily as accessing the classes written in Hyper scripting language. In fact, any pre-compiled java

classes can be accessed this way, including all the public classes in the Java API. Hyper is a full-

fledged object-oriented language. It also features strong typing with default parameter values and

multiple parameters return from a function call. Hyper supports a rich set of data types related to

mathematics and other technical computation, such as Matrix, Vector, Polynomial and several

others, in addition to the data types found in a typical programming language. Hyper features a

large library of functions, such as Linear Algebra and Statistics, in addition to the basic math

functions. Hyper is documented in the Hyper Reference Manual.

2 Installation
Installation of LDV involves downloading the software from the website and unzipping it into a

folder on a local drive.

2.1 Downloading

1. Go to www.virtual-computing.net

2. Click the link labeled “Download”

3. Click on the Download button for PC or Mac

4. The downloaded file is named “ldv_release.zip” for PC and “ldv_mac.zip” for Mac.

2.2 Installation

Unzip the ldv_release.zip file into your folder of choice on a local drive.

Warning: The software must be installed on a local drive. The software will not perform if

installed on a network drive.

2.3 Directories

2.3.1 Application for PC

This folder contains LDV-based programs written by users in Java. An example simulation file is

included by default.

2.3.2 ldv

This folder contains binary files for the software itself.

2.3.3 ldv\bin

This folder contains the application binary executable. Section 3 describes how to launch the

software.

2.3.4 ldv\doc

This folder contains documentation, including a user’s manual and a Hyper language reference.

These documents can be opened with any PDF reader.

2.3.5 ldv\script

This folder contains the scripts that the software can run. This directory can also be accessed

through the software itself when browsing for scripts. These scripts are included mostly as

examples and to demonstrate various capabilities of the software. More about how to run the

scripts and about the scripts is described later in this document.

This is the default folder for running scripts. How to change the default folder is described in the

next subsection.

2.3.6 ldv\config

This folder contains user preferences and other configuration files.

To change the default folder, and perform the following steps:

1. open the file config.ldv

2. Uncomment the line that starts with #working_dir by deleting #

3. Edit the path to the desired path.

2.3.7 ldv\config\startup

This folder contains scripts that are run automatically at the startup. Users can add scripts to this

folder if they want these scripts to run automatically at the startup.

The default directory can also be changed by adding a script in this folder and adding the

following command in the script:

changedir(“<desired path>”)

2.3.8 Application for Mac

3 Starting

3.1 For PC

1. Navigate to the ldv_release\bin directory.

2. Double click the ldv.exe file to start the application.

3.2 For Mac

Before you can run LDV for Mac, you need to override your security settings and allow the app to

install and open by the following the steps below:

 Open Finder.

 Locate the app you’re trying to open.

 Control+Click the app.

 Select Open.

 Click Open.

 The app should be saved as an exception in your security settings, allowing you to open it in the

future.

Ref:

https://www.lifewire.com/fix-developer-cannot-be-verified-error-5183898

4 Graphical User Interface (GUI)

This is the screen that users should see after launching the software. Like any typical software,

LDV has a main menu bar at the top, and a main tool bar right below the menu bar. The GUI is

organized with four panes: On the left, there is an App Pane; at the bottom, there is a System

Pane; on the right, there is a Property Pane; and at the center top the large pane is the Document

Pane. Descriptions of each of the panes is given later in this section.

4.1 Main Menu Bar

The main menu bar is depicted below:

The main menu bar is located at the top of the GUI. Various functionalities of the software are

organized into different menus. Each menu item triggers a utility or a function. Descriptions of

the various menus are given below:

Document Menu

The document menu is depicted below:

This menu is used to control documents. It contains options to create, open, close and save

documents.

File Menu

This menu is currently not operational.

Edit Menu

This menu is currently not operational.

View Menu

The view menu is depicted below:

The View menu items are described in the table below:

Menu Item Description

Shows or hides various elements, such as different panes,

of the software. This submenu is described in more detail

in the next subsection.

Activates the IDE Log tab in the System Pane. IDE Log

window displays messages from the Java Runtime

Environment (JRE). These messages can be used to

diagnose errors in the events of the software malfunction.

Shows or hides various elements of toolbars such as tools

related to files, undo/redo, performance etc.

This menu item is currently disabled.

Activates and deactivates the Full Screen Mode for the

software. Once in the Full Screen Mode, the menu bar

can be made visible by moving the cursor to the top of

the screen.

Show Submenu

The Show submenu is depicted below:

Selecting each item in the Show submenu will activate the corresponding window.

Toolbars Submenu

The Toolbars submenu is depicted below:

Items in the Toolbars submenu are selected to show or hide different groups of icons in the Main

Toolbar.

Navigate Menu

This menu is currently not operational.

Tools Menu

The Tools menu is depicted below:

The Tools menu items are described in the table below:

Menu Item Description

opens a dialog box for adding path for a JAR file and

importing library. How to import library is described

later in this document.

opens a dialog box for importing library from JAR files

that already been loaded. How to import library is

described later in this document.

opens a dialog box for setting options for the application.

How to set options is described later in this document.

Window Menu

The Windows menu is depicted below:

Menu items from this menu are used to manipulate various window. Currently, this menu is not

fully functional. This menu will change in the future.

Output Item: This menu item activates the IDE Log tab in the System Pane. IDE Log window

displays messages from the Java Runtime Environment (JRE). These messages can be used to

diagnose errors in the events of the software malfunction.

Help Menu

The Help menu is depicted below:

The Help menu items are described in the table below:

Menu Item Description

Opens the LDV User’s Manual using a default

PDF reader. The keyboard short cut is CRTL+H.

Opens the Hyper Reference Manual using a

default PDF reader. The keyboard short cut is

CRTL+Shift+H.

Opens the splash window for this application,

which provides information about the software.

4.2 Main Toolbar

Several of the icons in the Main Toolbar is currently disabled. The Main Toolbar will be

updated later.

Icon Name Description

New Document
Open new document for new project

Open
Opens a document that was previously saved.

Undo
Currently, disabled.

Redo
Currently, disabled.

Memory Usage

Shows the memory uses. Can be used to force

the application do garbage collection.

Profile Application

Profiles the application. It is used to access the

performance of the software.

Pause IO Check Pauses and resumes the application.

4.3 App Pane

App Pane is used to select tools. A collapse view and an expanded view of the App Pane are

depicted below:

Clicking or hovering over each tab exposes the tool pane that contains the tool icons for that app.

The tool pane can be docked, undocked, or floated. A floated tool pane can be moved to a

different location. This feature is especially useful when using multiple monitors. A tool pane

can also be docked at different panes of the application, such as the System Pane, Property Pane,

or the Document Pane.

Descriptions of the apps are presented in the table below:

Icon App Name Description

Explorer

App

This app is used to navigate the file system of the computer. It is

similar to the File Explorer in Window ® and the Finder in Mac OS

®. How to use Explorer App is described later in this document.

Text App

This app is used to insert texts in a document. It has the similar

capabilities of many word processors, such as M.S. Word ®. How

to use Text App is described later in this document.

Table App

This app is used to insert tables in a document. It has similar

capabilities of spread sheets, such as M. S. Excel ®. How to use

Table App is described later in this document.

Script App

This app is used to inset scripts in a document. This app is a script

editor, and it has similar capabilities as the editors in many

Integrated Development Environments (IDEs), such as Eclipse ®,

and Netbeans ®. How to use Script App is described later in this

document.

Plot App
This app is used to insert different types plots in a document. How

to use Plot App is described later in this document.

Workspace

App

This is a utility app to explore the workspace. It can be used to

check what variables are in the workspace and interrogate the values

of the variables. How to use Workspace App is described later in

this document.

4.4 System Pane

The System Pane hosts four tabs: Console, Directory, Workspace, and IDE Log. Each tab

activates a window.

4.4.1 Console Window

The Console Window is depicted below:

The top part of the console window features a toolbar. The toolbar contains a number notations

drop down menu, a number of decimal point selector, a working directory field, a working

directory history dropdown menu, an Enter button, and a button for a popup menu whose items

are commonly used commands.

The center part of the Console Window is where the output messages are displayed.

The bottom part of the Console Window consists of a command input field, also known as

“command line”, with a command history dropdown, and an Enter button.

There is a Directory tab in the Console Window that shows the directory that the current project

is save in.

How to use the Console Window is described later in this document.

4.4.2 Directory Window

The Directory Window is depicted below:

The Directory Window works with the Explorer App. The top part of the Directory Window

contains a field that displays the selected directory in the Explorer App. The bottom part of the

Directory Window displays the contents of the selected directory.

How to use the Directory Window is described later in this document.

4.4.3 Workspace Window

The Workspace window is depicted below:

This window displays the variables and their types and contents selected in the Workspace app.

This window contains a table with three columns. The column headers are Variable Name,

Type, and Value.

 How to use the Directory Window is described later in this document.

4.4.4 IDE Log Window

The IDE Log window is depicted below:

This window displays the Java output of the application.

4.5 Properties Pane

The Properties pane currently hosts two tabs: Command History and Selected Object.

4.5.1 Command History

The Command History tab activates a window that displays command history. The Command

History tab is depicted below:

4.5.2 Selected Object

The Selected Object tab activates a pane that contains the properties of an object that is selected

either in the System pane or in the Document pane. The view for properties of each object is

customized according to the object selected. In general, these panes display properties of the

selected object and allows to perform some action on the selected object. More about their

functionalities are described in the How to Use section of this document. Several examples are

given below:

Selected file:

The figure above shows a properties window for a selected Excel file. In addition to displaying

the properties, there are two buttons which allow the selected file to be opened either externally

in the native application of the file or internally inside LDV.

The figure above shows the properties pane of a JAR file.

Selected Variable:

The figure above shows a properties pane for a selected variable. In addition to displaying the

name and the type of the variable, it also displays the value of the variable.

Selected Text Box:

The figure above shows the properties pane of a text box selected in a document. The properties

are organized by tabs. Each tab displays subset of the related properties grouped together. Most

of these properties can be manipulated from the properties pane.

The figure above shows a properties pane of a selected 2D plot. The properties are organized by

tabs. Each tab displays subset of the related properties grouped together. Most of these

properties can be manipulated from the properties pane.

The figure above shows a properties pane of a selected 3D plot. The properties are organized by

tabs. Each tab displays subset of the related properties grouped together. Most of these

properties can be manipulated from the properties pane.

4.6 Document Plane

The Document pane hosts documents in separate tabs. LDV documents are universal

documents, meaning that they can contains different types of data. An example of a typical

document is shown below:

Documents are containers of components provided by various apps. Components produced by

different apps are of different data types. The above figure shows a plot, a script, a text box, and

a table. Only one of the components can be active at any time. The active component is adorned

by a frame, a menu bar, and/or a toolbar. The inactive frames are embedded in the document. In

the figure above, an active Table component with frame is shown.

4.6.1 App Frames

Components created by the Apps are contained in the App frames. App frames and data

components are embedded in Documents. App contents can be created using either GUI or

commands (via command line or script). After selecting the [Insert] button of a particular app

from its Tool pane, clicking in a document creates a frame with predefined size and clicking plus

dragging creates a frame of desired size. Clicking outside the frame embeds the content of the

frame into the document. There are elements common to all App Frames, such as menu bars and

toolbars. Menu bars also contains menus that are common to all Apps. Functions that are

common to all apps, such as open, save, etc., are implemented using common menu items and

common tool icons in the toolbar. Specific menu items and tool icons are added to different app

menus and toolbars that represents specific functions of those apps.

Each embedded item in a document is called an object. Each object has a handler (pointer or

reference). The handlers are used to send commands to the objects from the Command Line or

scripts. The name of the frame is the handler for that object. The name is originally assigned at

the time of the object creation, and the object can be renamed after their creation.

App Menu Bar

An app menu bar is depicted below:

File Menu:

A File menu of an app menu bar is depicted below:

Edit Menu:

An Edit menu of an app menu bar is depicted below:

Functions Menu:

A Function menu contains functions that are specific to an app; therefore, there are no common

menu items.

Format Menu:

A Format menu contains functions that are specific to an app; therefore, there are no common

menu items.

View Menu:

A View menu of an app menu bar is depicted below:

App Toolbar

The toolbar on the app frame is invisible by default. It can be made visible from the View menu

by checking View > Toolbar. A common app toolbar is depicted below:

4.7 Dialog Boxes

Dialog boxes are opened when certain functions are activated, such as Open (Import), close

(Export), Print, etc. Various dialog boxes are shown below:

Open Dialog Box:

Save Dialog Box:

Print Dialog Box:

Color Selection Dialog Box:

The color selection dialog box has five tabs for different color selection methods. The first tab,

which has the color swatches is shown below:

The second tab, which has the Hue, Saturation, and Value (HSV) color model is shown below:

The third tab, which has the Hue Saturation, and Lightness (HSL) color model is shown below:

The fourth tab, which has the Red, Green, and Blue (RGB) color model is shown below:

The fifth tab, which has the Cyan, Yellow, Magenta, and Black (CYMK) color model is shown

below:

After selecting the desired color, clicking the [OK] button applies the selected color to the

selected object and dismisses the dialog box. Clicking on the [Cancel] button cancels the

operation and dismisses the dialog box. Clicking on the [Reset] button sets all the color values to

zero.

5 Text User Interface (TUI)
In addition to having a Graphical User Interface (GUI), LDV also has a Text User Interface

(TUI). The TUI is implemented through the Console, the Command Line, and Script. The

syntax for the TUI is documented in the Hyper Reference manual.

Some TUI statements are applicable to the overall LDV application, and some TUI statements

are specific to an app. The app statements are described in the section of the relevant app. The

LDV statements are described in the table below:

Function Description
openFile(String path) Opens a file specified by the parameter path. Based on the

extension of the file, the file can be opened as a document,

inside an app frame, or with an external application.
importFile(String path) Imports a file specified by the parameter path inside an app

frame.

6 Using LDV

6.1 Working with Document

In LDV, components from various apps are composed in documents. LDV documents are

containers of components provided by various apps. Different apps produce different data types.

6.1.1 New Document

When LDV is launched, a new document is automatically created. Additional documents can be

created by either selecting the menu item [New Document] from the Document menu in the

main menu bar as shown below

or by clicking the [New] button on the main toolbar as shown below.

A new document can also be created by using the keyboard shortcut CTRL+N.

6.1.2 Opening Document

An existing document can be opened by either selecting the menu item [Open …] from the

Document menu in the main menu bar as shown below

or by clicking the [Open] button on the main toolbar as sown below.

An existing document can also be opened by using the keyboard shortcut CTRL+O.

Choosing one of the options above will open a dialog box as shown in Section 4.7.

The dialog box is used to locate the existing document file. LDV documents have extension

ldv. Once located, the file is selected and clicking on the [Open] button will open the selected

document. Clicking on the [Cancel] button cancels opening document.

6.1.3 Closing Document

An opened document is closed by making the document tab active and selecting the menu item

[Close] from the Document menu in the main menu bar as shown below.

The selected document can also be closed by using the keyboard shortcut CTRL+W. Selecting

the menu item [Close All] or using the keyboard shortcut CTRL+Shift+W closes all the open

documents.

6.1.4 Saving Document

An opened and modified document is saved by making the document tab active and either

selecting the menu item [Save] from the Document menu in the main menu bar, as shown

below,

or by clicking the [Save] button on the main toolbar, as sown below.

A modified active document can also be saved by using the keyboard shortcut CTRL+S. If the

active document has already been saved (or opened from an existing document) The Save action

will update the existing file. If the active document has never been saved, the Save action will

be similar to the Save As action, which is described next.

Selecting the menu item [Save As] or using the keyboard shortcut CTRL+Shift+S will open a

dialog box as shown in Section 4.7.

The dialog box is used to navigate to the location where the file is to be saved. A name of the

file must be typed in the File Name text field. Clicking on the [Save] button will save the file

with the name provided in the text field. Clicking on the [Cancel] button will save the Save

operation.

6.2 Using Console and Command History

Console and Command History windows are generally used together. Console is used to directly

interact with the system. The command window is presented here again for convenience.

A command can be inputted directly in the Command Input Field. A command can be a Hyper

command, a Hyper statement, or a Hyper script file name. Details of the Hyper commands,

statements, and scripts can be found in the Hyper Reference Manual. After typing the command,

either clicking on the Command Enter button or pressing the Enter key on the keyboard executes

the command. Outputs are displayed in the Output window. The Command History Dropdown

displays a limited number of previous commands. Selecting any item from the dropdown

execute the corresponding command.

A longer list of command history is also maintained in the Command History panel of the

Property pane. The Command History panel is presented here again for convenience.

Individual commands appear as single items in the middle section. Commands can be

individually selected one or multiple command can be selected by holding down the CTRL key

and clicking on the chosen commands. All the command in the Command History can be

selected by using CTRL+A key combination.

The selected commands can be copied to the clipboard by clicking the Copy button. The copied

commands can be pasted in the Command Input Field of the console or in a script editor.

Alternately, the selected commands can be inserted in a new script by clicking on the Script

button. After adding commands to a script editor, the script can be further modified.

The Command History window can be cleared by clicking on the Clear button.

The toolbar above the Output window is depicted below:

The toolbar contains some utility tools. The Notation option is used to specify the notation in

which results will be displayed. The options are regular, scientific, and engineering.

Decimal option is used to specify the number of decimal places that the result is displayed in.

Working directory is the directory from which scripts are run. The working directory can be

changed using the change directory command or function. Refer to the Hyper Reference Manual

for detail.

Clicking on “Commands…” button displays a popup menu that contains a list of commonly used

commands that can be used conveniently without having to type them in manually. The popup

menu is depicted below:

A detailed description of all these options given in the table below:

Command Stands for Description

pwd
Print Working

Directory

Selecting this menu item or typing “pwd” in the

Command Input Field prints out the current working

directory path.

cd ..
Change Directory to

the parent directory

Selecting this menu item or typing “cd ..” in the

Command Input Field causes the current working

directory to be set to the directory that is one level

above the current working.

ls List

Selecting this menu item or typing “ls” in the

Command Input Field prints the contents of the

current working directory in the Output Window.

lsd List in detail

Selecting this menu item or typing “lsd” in the

Command Input Field prints the contents of the

current working directory in the Output Window in

detail format.

ws Workspace

Selecting this menu item or typing “ws” in the

Command Input Field prints the contents of the

current workspace in the Output Window.

wsd Workspace in detail

Selecting this menu item or typing “wsd” in the

Command Input Field prints the contents of the

current workspace in the Output Window in detail

format.

wsv
Workspace with

values

Selecting this menu item or typing “wsv” in the

Command Input Field prints the contents with their

values of the current workspace in the Output

Window in detail format.

wsf Workspace functions

Selecting this menu item or typing “wsf” in the

Command Input Field prints the only the function

and their parameters that are in the current

workspace in the Output Window.

wsfd
Workspace function in

detail

Selecting this menu item or typing “wsfd” in the

Command Input Field prints the only the function

and their parameters that are in the current

workspace in the Output Window in detail format.

wsl Workspace libraries

Selecting this menu item or typing “wsl” in the

Command Input Field prints the only the libraries

and their parameters that are in the current

workspace in the Output.

clear

console
Clear console

Selecting this menu item or typing “clear

console” in the Command Input Field clears

output messages from the Output Window of the

console.

clear var Clear variables

Selecting this menu item or typing “clear var”

in the Command Input Field clears only the

variables from the current workspace.

clear fun Clear functions

Selecting this menu item or typing “clear fun”

in the Command Input Field clears only the

functions from the current workspace.

clear lib Clear libraries

Selecting this menu item or typing “clear lib”

in the Command Input Field clears only the

libraries from the current workspace.

clear all Clear everything

Selecting this menu item or typing “clear fun”

in the Command Input Field clears everything from

the current workspace.

The Workspace app can be used to interact with the workspace graphically.

6.3 Using Apps

There are two different kinds of apps in LDV: Apps that produce components for documents and

apps that do not. Apps that do not produce components for documents can be thought of as

utility apps related to the LDV system, such as the Workspace and File Explorer apps. These

apps are called Utility Apps. Apps that produce components for documents are called Document

Component Apps. Currently, there are four Document Component Apps: Text app, Table app,

Script app, and Plot app. Some of these app’s functions can be accessed using TUI.

Utility Apps

6.3.1 Using Workspace App

As seen in the previous section, the user can interact with workspace by issuing commands from

the console. The user can also interact with the workspace using graphical tool, Workspace app.

The Workspace app GUI consists of a tool panel in the App pane, a tab in the System pane, and a

Property panel in the Selected Object tab of the Property pane. The Workspace tool pane is

depicted below:

The workspace is organized hierarchically by a tree. The contents of the workspace are grouped

by libraries, functions, and variables. Selecting any item on the tree activates the Workspace tab

of the System pane and displays the content of the selected item.

The Workspace tab with the Library item selected from the tree in the Workspace tool pane is

depicted below:

The figure above shows a list of libraries in the current workspace. Selecting a library item from

the Workspace window activates the property panel of the selected library. An example of the

Library property panel is depicted below:

The figure above shows the functions with their input and output parameters in the selected

library. The example library does not have any attribute. If it had, they would be displayed in

the Attributes box. Attributes are constants associated with the library such as PI.

The Workspace tab with the Function item selected from the tree in the Workspace tool pane is

depicted below:

There are no property panel associated with the functions.

The Workspace tab with the Variable item selected from the tree in the Workspace tool pane is

depicted below:

The figure above shows a table of variables in the current workspace. The first column contains

the variable names. The second column contains the types of the variables. The third column

contains the values for some variables. If the value of a variable contains too many components,

such as the case for the variable m1 in the above figure, its value is not displayed in the table.

Instead, the value is displayed in the property panel of the variable. Selecting a variable item

from the Workspace window activates the property panel of the selected library. An example of

the Variable property panel is depicted below:

6.3.2 Using File Explorer App

The File Explorer app GUI consists of a tool panel in the App pane, a tab in the System pane,

and a Property panel in the Selected Object tab of the Property pane. The File Explorer tool pane

is depicted below:

The figure above shows the computer system file directory tree. The directories can be traversed

using the tree. The tree works similar to the file explorers in the popular operating systems, such

as Windows® and MacOS®. Selecting any item on the tree activates the Directory tab of the

System pane and displays the content of the selected directory.

The Directory tab with the selected directory is depicted below:

The figure above shows a table of files in the selected directory. The first column contains the

file names. The second column contains the types of the files. The third column contains the

size of the files. The fourth column contains the dates the files were modified. And the fifth

column contains the names of the owners of the files. The toolbar on the top of the directory

window shows the path of the selected directory.

Selecting a file from the Directory window activates the property panel of the selected file. The

property panel of a file is customized for each file type. Generally, the properties include the file

name, file type, file size, date of the last modification, and the file owner’s name. In addition,

either the icon for the file or a preview of the file is displayed. An example of the File property

panel of a picture file is depicted below:

This Property panel shows the preview of the file. Clicking on the [Open …] button will open

the file with the default photo application.

An example of the File property panel of an Excel is depicted below:

This property panel shows an icon of the file instead of preview. At the bottom of the panel,

there are two buttons: [Open In LDV] and [Open Externally]. Clicking on [Open In LDV]

button imports the file inside the LDV and allows LDV tools to manipulate it. Clicking on

[Open Externally] button opens the file externally in the file’s native application if the native

application is available. If the file cannot be opened in the LDV or the file’s native application is

not available, the corresponding button will be disabled.

The next example shows the property panel of a JAR file.

There are four parts to this property panel. The top part contains a dropdown that allows to

select a class in the JAR file. Note that only the classes from the default package will be

displayed in the dropdown. After a class is selected, the attributes of the selected class are

displayed in the Attributes box and the functions (methods) of the selected class are displayed in

the Functions box. At the bottom of the panel there is a text field and a button [Copy]. The text

field is prefilled with a generic variable name. The variable name in the text field can be edited.

If the [Copy] button is clicked, an import statement for the selected class is copied into the

clipboard. Here is an example of an import statement:

The import statement contains an import command, a class name, and a jar path. A pointer to the

imported class is assigned to a variable of the specified name. The statement can be pasted in a

script for later use or in the Command Input Field for immediate execution. The import

statement can also be executed by pressing the [ENTER] key in the keyboard when the variable

text field has the focus.

Document Component Apps

All the Document Component Apps share common menus, menu items, and toolbar tools. In

addition, some Document Component Apps have menu items and toolbar tools that are specific

to the particular app. In the next two subsections, the common menu items and common toolbar

tools are described.

Common App Menu Bar

A common app menu bar is depicted below:

Menus that are common to all apps are:

• File

• Edit

• Functions

• Format

• View

File Menu:

A common File menu of an app menu bar is depicted below:

The common File menu items are described in the table below:

Menu Item Description

Create a new content in the app frame. This action removes

the existing content. The keyboard short cut is CRTL+N.

Renames the frame. The keyboard short cut is CRTL+R.

Imports an existing content. A dialog is opened when this

menu item is selected. The dialog box is used to select a file to

be imported. Import is similar to Open. The name Import is

used to distinguish it from the Open menu item in the Main

Menu Bar.

Exports the contents of the app frame to a different file. A

dialog is opened when the menu item Export is selected. The

dialog box is used to create a file in which the frame content

will be exported. Export is similar to Save. The name Export

is used to distinguish it from the Save menu item in the Main

Menu Bar. The keyboard short cut is CRTL+S.

Exports the frame content to a different file. The keyboard

short cut is CRTL+Shift+S.

Prints the content of the frame. A dialog is opened when this

menu item is selected. Print preferences can be selected in the

dialog box. The keyboard short cut is CRTL+P.

Closes the app frame. The keyboard short cut is CRTL+W.

Edit Menu:

An Edit menu of an app menu bar is depicted below:

The common Edit menu items are described in the table below:

Menu Item Description

Reverses the previous action. The keyboard short cut is

CRTL+Z.

Repeats the previous action. The keyboard short cut is

CRTL+Y.

Copies the selected item into the clipboard and deletes the

selected item. The keyboard short cut is CRTL+X.

Copies the selected item, but it does not delete the selected

item. The keyboard short cut is CRTL+C.

Copies the item from the clipboard to the content of the app

frame. The keyboard short cut is CRTL+V.

Removes the selected item.

Not every item from this menu is currently available for all the apps.

Functions Menu:

A Function menu contains functions that are specific to an app; therefore, there are no common

menu items.

Format Menu:

A Format menu contains functions that are specific to an app; therefore, there are no common

menu items.

View Menu:

A common View menu of an app menu bar is depicted below:

Show Toolbar Item: Selecting this menu item makes the app toolbar visible. The app toolbar is

hidden by default.

Common App Toolbar

The toolbar on the app frame is invisible by default. It can be made visible from the View menu

by checking View > Toolbar. A common app toolbar is depicted below:

In addition to the common toolbar, some apps have additional toolbars specific to the app.

Descriptions of the buttons are presented in the table below:

Icon Name Description

New

This button is clicked to create a new content in the app frame. This

action removes the existing content.

Import

This button is clicked to import an existing content. Clicking this

button opens a dialog box. The dialog box is used to select a file to be

imported.

File History

Clicking on this button displays a list of previously imported files. An

item from the list can be selected to import the corresponding file.

Delete Clicking on this button clears the content from the app frame.

Export Clicking on this button exports the content of the app frame.

Export As

This button is used to export the contents of the app frame to a

different file. Clicking on this button open a dialog box. The dialog

box is used to create a file in which the frame content will be exported.

Print This button is used to print the content of the app frame.

6.3.3 Using Text App

The Text app is used to add formatted text to a document. The app provides a comprehensive set

of text formatting tools. The app creates components that are similar to word processor

documents.

Tool Panel

The tool panel for this app is organized into several tabs: [General], [Font], [Paragraph], and

[Find and Replace]. Each tab contains several related text formatting tools. A button [Insert]

is available regardless of which tab is selected. This button is a toggle button, and it is selected

to insert a Text component in a document. The tabs are presented below:

General Tab:

The figure above shows the General tab. It contains 14 buttons. Descriptions of the button are

given in the table below:

Icon Name Description

New Selected to insert a new Text component in a document.

Import Selected to import a text from a file.

Export Exports the content of the active text component.

Cut

Copies selected text from the active text component into

the clipboard and delete the selected text.

Copy

Copies selected text from the active text component into

the clipboard but does not delete the selected text.

Paste

Pastes the content of the clipboard into the cursor location

of the active text component.

Undo Reverses the last action.

Redo Repeats the last action.

Insert Image

Inserts image in the cursor location of the active text

component.

Insert Date

MM/DD/YYYY

Inserts the current date in the cursor location of the active

text component in MM/DD/YYYY format.

Insert Date

MMM DD, YYYY

Inserts the current date in the cursor location of the active

text component in MMM DD, YYYY format.

Insert Date

MMMM DD, YYYY

Inserts the current date in the cursor location of the active

text component in MMMM DD, YYYY format.

Insert Symbol

Inserts symbol in the cursor location of the active text

component.

Font Tab:

The figure above shows the Font tab. Descriptions of the buttons and dropdowns are given in the

table below:

Icon Name Description

Bold Makes the selected text bold.

Italic Makes the selected text italic.

Underline Underlines the selected text.

Strike

Through
Strikes through the selected text.

Superscript Makes the selected text superscript.

Subscript Makes the selected text subscript.

Font Name Used to select font.

Font Size Used to select font size.

Font Tab:

The figure above shows the Paragraph tab. Descriptions of the button are given in the table

below:

Icon Name Description

Align Left Aligns the selected paragraph to the left.

Align Center Aligns the selected paragraph to the center.

Align Right Aligns the selected paragraph to the right.

Align Justify Aligns the selected paragraph to justify.

Single Space Puts single spaces between the lines of the selected paragraph.

1.5 Space Puts 1.5 spaces between the lines of the selected paragraph.

Double Space Puts double spaces between the lines of the selected paragraph.

Triple Space Puts triple spaces between the lines of the selected paragraph.

Decrease Indent Decreases the indentation of the selected paragraph.

Increase Indent Increases the indentation of the selected paragraph.

Find and Replace Tab:

The figure above shows the Find and Replace tab. Descriptions of the tools are given in the

table below:

Icon Name Description

Find What Text field to enter the search string.

Replace With
Text field to enter the replacement

string.

Search Up Sets the direction of the search to up.

Search Down

Sets the direction of the search to

down.

Whole World Only Searches for only whole words.

Match Case

Searches only for strings that match

the cases of the search string.

Find Next Find the next match.

Replace Replaces the found string.

Replace All Replaces all the matched strings.

Menu Bar

The Text app uses the standard app menu bar and menu items.

Toolbar

The app also uses the standard app toolbar.

Inserting new Text component in a document

A new Text component can be inserted in a document using GUI or command. The following

steps will insert a Text component using GUI:

1. Select the [Insert] button from the Text tool pane.

2. Either click or click and drag in the selected open document.

If just clicked, a Text app frame of a predetermined size will be created and embedded in the

document. If clicked and dragged, the app frame size will be determined by the drag action.

A Text component can also be inserted using the following command:

createText(<text component name>)

The string inside the angle bracket (< >) is the name the user wants to assign to the inserted

component.

Once a text component is inserted, new text can be added and formatted, or text can be imported

from a file.

An example of a Text component depicted below:

The figure above shows a Text component with the app frame activated. The Content shows

formatted text with different font types, size, and colors.

Editing

Editing text is similar to editing in any word processor.

Text App’s Text User Interface

Function Description
createText("<text

object Name">)
Creates a new Text object in the selected document. The name of the

object is provided by the user in the angle bracket (<>).

6.3.4 Using Table App

The Table app is used to add tabular data to a document. The app provides a comprehensive set

of tools for manipulating tabular data. The app creates components that are similar to spread

sheet documents.

Tool Panel

The tool panel for this app is shown below:

The Table tool panel is organized in several groups:

1. Insert

2. File

3. Edit

4. Font

5. Data format

6. Alignment

7. Border

Insert Group

The Insert group contains an “insert” button and a couple of spinners to enter numbers as shown

below:

The spinners labeled “Rows” and “Columns” are used to specify the number of rows and

columns, respectively, will be in the newly inserted table.

The items in the Insert group are described in the table below:

Icon Name Description

Insert

The “Insert” button is selected to create a new

table and insert it in a document.

Rows

Used to specify the number of rows will be in

the newly inserted table.

Columns

Used to specify the number of columns will be

in the newly inserted table.

File Group

The File group contains tools related to file utilities and is depicted below:

The items in the File group are described in the table below:

Icon Name Description

New

Creates a new table in the selected Table frame. The

contents of the existing table is lost.

Import

Imports an existing table or spread sheet from a file.

Close Closes the selected table.

Export Exports the selected to a file.

Save As
Exports the selected table in a different name and/or

format.

Print Prints the selected table.

Edit Group

The Edit group contains tools for editing and is depicted below:

The items of the Edit groups are described in the table below:

Icon Name Description

 Fill Up
Fills the cells above the selected cell with the copies of the

content of the selected cell.

 Fill Down
Fills the cells below the selected cell with the copies of the

content of the selected cell.

 Fill Left
Fills the cells left of the selected cell with the copies of the

content of the selected cell.

 Fill Right
Fills the cells right of the selected cell with the copies of

the content of the selected cell.

 Insert Rows Inserts a new row below the selected row.

 Append Row Adds a new row at the end of the table.

 Remove Rows Removes the selected rows.

 Insert Columns Inserts a new column at the right of the selected column.

 Append Column Adds a new column at the end of the table.

 Remove Column Removes the selected columns.

 Clear Table Clears the entire table.

 Clear Selected Clears the selected cell of the table.

 Trim Table
Removes the rows and columns after the last non empty

row and column.

Font Group

The Font group contains tools for formatting the contents of the selected table and is depicted

below:

The items of the Font groups are described in the table below:

Icon Name Description

 Font Family
Sets the font family for the contents of the

selected cells.

 Fill Right
Sets the font size for the contents of the

selected cells.

 Bold
Sets the font style for the contents of the

selected cells to bold.

 Italic
Sets the font style for the contents of the

selected cells to Italic.

 Text Color

Opens a color chooser dialog box to set the

text color for the contents of the selected

cells. The Color chooser dialog box is

described in Section 4.7

 Background Color

Opens a color chooser dialog box to set the

background color of the selected cells. The

Color chooser dialog box is described in

Section 4.7

Data Format Group

The Edit group contains tools to format data and is depicted below:

The items of the Data Format group are described in the table below:

Icon Name Description

Data Format

Selector

Dropdown to select the format for the data.

Decimal Point

Decrease
Moves the decimal point to the right.

Decimal Point

Increase
Moves the decimal point to the left.

The expanded view of the Data Format Selector dropdown menu is shown below:

The items in the Data Format selector are described in the table below:

Item Description Example

Auto Default Format.

General [No

Format]
No Format.

Number Format as number. 123456789

Engineering

Numbers are displayed in Engineering notation, which is a

version of scientific notation in which the exponent of ten

must be divisible by three

123.456e9

Scientific

Numbers are displayed in Scientific notation, Nonzero

numbers are written in the form

𝑚 × 10𝑛

or 𝑚 times ten raised to the power of 𝑛, where 𝑛 is an

integer, and the coefficient m is a nonzero real number

(usually between 1 and 10 in absolute value)

123.456e5

Hexadecimal

Numbers are displayed in Hexadecimal (also base 16 or

hex) numeral system, which represents numbers using a

radix (base) of 16.

Octal

Numbers are displayed in the Octal numeral system (or oct

for short), which is the base-8 number system, and uses the

digits 0 to 7.

Binary
Numbers are displayed in a Binary format, which is

expressed in the base-2 numeral system

Accounting

Numbers are displayed the Accounting format, which

contains two decimal points, a thousand separator. The

difference between the Accounting format and the

Currency format is that the Accounting format puts the

dollar sign for example, at the far left end of the cell, and

displays zero as a dash.

$ 123.56

Currency

Numbers are displayed the Currency format, which is

similar to the Accounting format. However, the decimal

points appear aligned in the column and the currency

symbol appears next to the first digit.

$123.45

Percent Displays a percent symbol (%) after the number 89%

Date & Time Displays the number as date and time

Date Displays the number as date

Time Displays the number as time

Boolean Displays the value in Boolean (True or False)

Text Displays the content of the cell as text.

List Displays the content of the cell as list.

Alignment Group

The Alignment group contains tools for aligning the contents of the selected table and is depicted

below:

The items of the Font groups are described in the table below:

Icon Name Description

Left Alignment

Horizontally aligns the contents of the selected cells to the

left.

Center Alignment

Horizontally aligns the contents of the selected cells to the

center.

Right Alignment

Horizontally aligns the contents of the selected cells to the

right.

Top Alignment

Vertically aligns the contents of the selected cells to the

top.

Middle Alignment

Vertically aligns the contents of the selected cells to the

middle.

Bottom Alignment

Vertically aligns the contents of the selected cells to the

bottom.

Border Group

The Border group contains tools to put borders around selected cells and is depicted below:

The items of the Border group are described in the table below:

Submenu Item Description

 Adds border to the bottom of the selected cells.

 Adds border to the top of the selected cells.

 Adds border to the left of the selected cells.

 Adds border to the right of the selected cells.

 Removes all borders.

 Adds borders to all cells.

 Adds border to the outside of the selected cells.

 Adds a thick border to the outside of the selected cells.

 Adds a double border to the bottom of the selected cells.

 Adds a thick border to the bottom of the selected cells.

Adds a double border to the top and bottom of the

selected cells.

Adds a thick border to the top and bottom of the selected

cells.

Adds a single order to the top and a double border to the

bottom of the selected cells.

Opens a color selection dialog box. Which can be used to

changes the border color. This is the same dialog box as

shown in the Font submenu section.

Menu Bar

The Table app uses the standard app menu bar. However, several of the menus have items

specific to the Table app. The menus specific to this app are described below:

Edit Menu

The Edit menu for the Table app is shown below:

The common Edit menu item were described previously; therefore, only the menu items specific

to the Table app are described in the table below:

Menu Item Description

Fills the cells below the selected cell with the copies of the

content of the selected cell.

Fills the cells right of the selected cell with the copies of the

content of the selected cell.

Inserts a new row below the selected row.

Adds a new row at the end of the table.

 Removes the selected rows.

Inserts a new column at the right of the selected column.

Adds a new column at end of the table.

Removes the selected columns

 Clears the entire table.

Clears the selected cell of the table.

 Removes the rows and columns after the last non empty row

and column.

Format Menu

The Format menu for the Table app is shown below:

Font Submenu

The Font submenu is shown below:

The items of the Font submenu are described in the table below:

Submenu Item Description

 Makes the selected cell contents bold.

 Makes the selected cell contents italic.

Opens a color selection dialog box. Which can be used to changes the

text color.

 Opens a color selection dialog box. Which can be used to changes the

cell background color.

The color selection dialog box is shown in Section 4.7

Alignment Submenu

The Alignment submenu is depicted below:

The items of the Alignment submenu are described in the table below:

Submenu Item Description

Horizontally aligns the contents of the selected cells to the left.

 Horizontally aligns the contents of the selected cells to the center.

 Horizontally aligns the contents of the selected cells to the right.

 Vertically aligns the contents of the selected cells to the top.

Vertically aligns the contents of the selected cells to the middle.

 Vertically aligns the contents of the selected cells to the bottom.

Border Submenu

The Border submenu is depicted below:

The items of the Border submenu are described in the table below:

Submenu Item Description

 Adds border to the bottom of the selected cells.

 Adds border to the top of the selected cells.

 Adds border to the left of the selected cells.

 Adds border to the right of the selected cells.

 Removes all borders.

 Adds borders to all cells.

 Adds border to the outside of the selected cells.

 Adds a thick border to the outside of the selected cells.

 Adds a double border to the bottom of the selected cells.

 Adds a thick border to the bottom of the selected cells.

Adds a double border to the top and bottom of the

selected cells.

Adds a thick border to the top and bottom of the selected

cells.

Adds a single order to the top and a double border to the

bottom of the selected cells.

Opens a color selection dialog box. Which can be used to

changes the border color. This is the same dialog box as

shown in the Font submenu section.

View Menu

The View menu for the Table app is shown below:

Only the menu items specific to the Table app are described in the table below:

Menu Item Description

Shows or hides the toolbar that contains the commonly used

tools in the Table app.

 Shows or hides the toolbar that contains tools related to editing.

Shows or hides the toolbar that contains tools related to data

formatting.

Shows or hides the toolbar that contains tools related to

changing font characteristics.

Shows or hides the toolbar that contains tools related to cell

content alignment.

Shows or hides the toolbar that contains tools related to

modifying borders.

A checkmark before the menu item indicates if a particular toolbar is visible.

Toolbar

The Table app uses several toolbars specific to this app, in addition to the standard app toolbar.

Typical Toolbar

The Typical toolbar contains tools that are typically used. The Typical toolbar is depicted below:

The items of the Typical toolbar are described in the table below:

Icon Name Description

 Decimal Point Decrease Moves the decimal point to the right.

 Decimal Point Increase Moves the decimal point to the left.

 Bold Makes the selected cell contents bold.

 Italic Makes the selected cell contents italic.

 Cut
Copy contents of the selected cells into the clipboard and

delete the selected text.

Copy

Copies contents of the selected cells into the clipboard but

does not delete the selected text.

 Paste
Pastes the content of the clipboard at the selected cell of

the table.

 Clear Selected Clears the selected cell of the table.

 Insert Rows Inserts a new row below the selected row.

 Remove Rows Removes the selected rows.

 Insert Columns Inserts a new column at the right of the selected column.

 Remove Columns Removes the selected columns.

Edit Toolbar

The Edit toolbar is depicted below:

The items of the Edit toolbar are described in the table in the description of the Edit group of the

tool panel.

Font Toolbar

The Font toolbar is depicted below:

The items of the Font toolbar are described in the table in the description of the Font group of the

tool panel.

Data Format Toolbar

The Edit toolbar is depicted below:

The items of the Data Format toolbar are described in the table in the description of the Data

Format group of the tool panel.

Alignment Toolbar

The Alignment toolbar is depicted below:

The items of the Alignment toolbar are described in the table in the description of the Alignment

group of the tool panel.

Border Toolbar

The Border toolbar is depicted below:

The items of the Border toolbar are described in the table in the description of the Border group

of the tool panel.

Inserting new Table component in a document

A new Table component can be inserted in a document using GUI or command. The following

steps will insert a Table component using GUI:

1. Select the [Insert] button from the Table tool pane.

2. Either click or click and drag in the selected open document.

If just clicked, a Table app frame of a predetermined size will be created and embedded in the

document. If clicked and dragged, the app frame size will be determined by the drag action.

A Table component can also be inserted using the following command:

createTable(<table object name>)

The string inside the angle bracket (< >) is the name the user wants to assign to the inserted

component.

Once a table component is inserted, new table can be added, manipulated, and formatted or table

can be imported from a file.

An example of a Table component depicted below:

Editing

Entering Data in a Table

Data can be entered in a table simply by selecting a cell on the table and typing. After finished

typing, the key [Enter] or the key [TAB] on the keyboard must be pressed. Otherwise, the typed

data will be lost. If the key [Enter] is pressed, the cell below will be selected next. If the key

[TAB] is pressed, the cell on the right will be selected next.

Data can also be entered using the Text User Interface (TUI). The syntax for entering data in a

single cell is

<Table Name> [<row> , <column>] = data

Example:

Table1[2,3] = 5

After executing this statement, the table look like the figure below:

 The syntax for entering data in multiple cells is

<Table Name> [<row start : row end> , <column start : column

end>] = {data1, data2 … datan}

Example:

Table1[2:3,1:2] = {“abc”, “def”, 1.5, 2}

After executing this statement, the table look like the figure below:

The number of data in the list (inside the curly braces) right of the equal (=) must match the

number of data implied by the indices inside the square brackets left of the equal (=). In this

case, the number of rows specified is 2 (2 to 3), and the number of columns specified is 2 (1 to

2). So, the total number of data specified by the indices is 4, which is the same as the number of

data in the list.

Entering Formulas in a Table

Formulas can be entered in a selected cell by first typing the character equal (‘=’) then typing the

rest of the formula. The syntax for formulas are the same as that of the Hyper (Refer to Hyper

Reference Manual for detail). Other cells can be referred in the formula by typing the coordinate

row and column numbers of the referred cell inside square brackets, e.g. [<row>, <column>].

Other cells can also be referred by simply clicking the referred cells while typing a formula. The

square bracket and the coordinate row and column numbers will be entered in the formula

automatically.

Example:

An example of a formula that add the value of the cell in row 2 and column 2 to the value of the

cell in row 3 and column 2.

= 10.5 + [2,2] + [3,2]

Formulas can also refer to cells in a different table.

Example:

A formula in Table2 can refer to a cell in Table1 as follows:

= 10.5 + [2,2] + Table1[3,3]

When a table refers to its own cell, it does not need to specify its own name; however, when it

refers to a different table it does need to specify the other table’s name.

Cell Selection

Contents of a Table cell can be selected by clicking on the start of the selection cell and dragging

the mouse to the end of the selection cell.

Before selection can begin, it should be ensured that the cursor looks like .

Selection can also be made using TUI. The syntax for single cell selection is

selectCell(<row>, <col>)

<row > represents row number and <col > represents the column number of the cell to be

selected.

The syntax for multiple cell selection is

selectCell(<firstRow>, <firstCol>, <lastRow>, <lastCol>)

<firstRow> and <firstCol> represent the row and column numbers of the cell at the

start of the block of the cells to be selected. <lastRow> and <lastCol> represent row and

column numbers of the last cell of the block of cells to be selected.

Items in the angle brackets are supplied by the user.

Delete

Contents of the selected cells can be deleted by either selecting the [Delete] menu item from the

Edit menu or by pressing the Delete key on the keyboard.

Delete operation can also be performed using TUI. The syntax for cut is

<Table Name>.delete()

Cut

Contents of a Table cell can be cut, copied, and pasted. These actions work similar to that of

other spread sheet programs, such as Excel®.

Cut and Paste operations can also be performed using TUI. The syntax for cut is

<Table Name>.cut()

Copy

Like in other spread sheet programs, when copied and pasted the formula indices are modified to

maintain relative references. For example, if a cell is copied then pasted in 3 cells down, the row

indices in the formula (which are referring to other cells) will be increased by 3. Likewise, if the

copied cells are pasted 2 cells to the right, the column indices will be increased by 2.

Pasted data will not be modified. To prevent certain indices from modifying, use a $ in front of

the indices.

The TUI syntax for copy is

<Table Name>.copy()

Paste

And the syntax for paste is

<Table Name>.paste()

Move

Contents of the cells can be moved by either cutting and pasting or by dragging on the selected

cells border. Before move can begin, it should be ensured that the cursor looks like .

Fill Down Fill Right

Fill Down and Fill Right actions can be used to replicate a formula several times. To fill down,

execute the following steps:

1. Select the desired cell

2. Move the cursor to the down-right corner of the selected cell. The cursor should change

to +.

3. Click and drag down or right.

As with Copy and Paste operations, the indices in the formula of the replicated cell will be

updated to maintain relative reference.

Example: Creating function datasets

The table app can be used to create table data that relates to a function. For this example, we will

create a simple data set for x vs x2.

1. Click on the cell[1,1] and enter the number 1.

2. Click on the cell[2, 1] and type in “=” to start a formula.

3. Click on the cell[1,1] or pressthe Up Arrow, (↑) key on the keyboard. This will make

reference to the cell [1,1] in the formula as “= [1,1]”.

4. Add “ + 1” to the formula. Now the formula should look like “= [1,1] + 1”. This mean

the value in the cell[2,1] will be 1 increment of the value in the cell[1,1], which is 2.

5. Click on the bottom right corner of the cell[2,1] when the + icon appears and then drag

down till you reach the number 21. This fills down the formula of the first cell onto the

cells below.

6. Click on the cell[1, 2] and type in “=” to start another formula.

7. Click on the cell[1,1] or press the Left key (←) on the keyboard.

8. Add “^2” to the formula. This mean the value in the cell[1,2] will be square the value of

the cell[1,1].

9. Click on the bottom right corner of the cell when the + icon appears and then drag down

till you reach the number 441.

10. Column 1 has a data set of [1,21] with increments of 1, and column 2 has those values

squared (Shown on the left side of the table below).

11. Change the value of the cell[1,1] to -10. This will update all the entrees. Now, Column 1

has a data set of [-10,10] with increments of 1, and column 2 has a data set of [100,100]

(Shown on the right side of the table below).

Cell[1,1] = 1 Cell[1,1] = -10

Table App’s Text User Interface (TUI)

The TUI for the Table app consists of functions and methods. Functions are independent of

particular instances of Table app; whereas, the methods are applicable only to a instance of Table

app. Therefore, methods are called with a dot notation, and the functions are called without it.

Syntex Function call:

<function name>(param1, param2, …, paramN)

The TUI functions for the Table app are described in the table below:

Function Description
createTable("<Table object Name">) Creates a new Table object in the selected

document. The name of the object is

provided by the user in the angle bracket

(<>).

Syntax Method call:

<table name>.<method name>(param1, param2, …, paramN)

The TUI methods for the Table app are described in the table below (in alphabetical order):

Method Description Return
alignBottom()
alignCenter()
alignLeft()
alignMiddle()
alignRight()
alignTop()
appendColumn()
appendColumn(integer cols)
appendRow()
appendRow(integer rows)
bold()
clear()
clearAllSelection()
copy()
copy(integer row, integer col)
copy(integer row1, integer col1,

integer row2, integer col2)

cut()
cut(integer row, integer col)
cut(int row1, int col1, int row2,

int col2)

decreaseDecimalPoint()
decreaseDecimalPoint(integer num)
delete()
delete(integer row, integer col)
delete(integer row1, integer col1,

integer row2, integer col2)

exportFile(String path)
exportTable(String path)
exportTableAs()
fillColor()
fillColor(integer red, integer

green, integer blue)

fillColor(integer red, integer

green, integer blue, integer

alpha)

fillColor(real red, real green,

Double blue)

fillColor(real red, real green,

real blue, real alpha)

fillColor(String colorName)

fillDown()
fillLeft()
fillRight()
fillUp()
fontFamily(String name)
fontSize(integer size)
get() Table2d

getColumnCount() integer
getColumnWidth()
getColumnWidth(int col)
getIndex(integer row, integer col) object
getIndex(range row, range col) object
getRowCount() integer
getRowHeight() integer
getRowHeight(integer row) integer
getSelectedColumn() integer
getSelectedColumnCount() integer
getSelectedRow() integer
getSelectedColumn() integer
getSelectedColumnCount() integer
getSelectedRow() integer
getSelectedRowCount() integer
importFile(String dirName, String

fileName)

importFile(String path)
importTable(String dirName, String

fileName)

importTable(String path)

increaseDecimalPoint()
increaseDecimalPoint(integer num)
insertColumns()
insertColumns(integer col)
insertColumns(integer colStart,

integer cols)

insertRows()
insertRows(integer row)
insertRows(int rowStart, integer

rows)

italic()
lineColor()
lineColor(integer red, integer

green,

 Integer blue)

lineColor(integer lineNum, integer

red, integer green,

 integer blue, integer

alpha)

lineColor(real red, real green,

real blue)

lineColor(real red, real green,

real blue, real alpha)

lineColor(String colorName)
createTable()
paste()
removeColumn()
removeColumns(integer col)
removeColumns(range col)
removeColumns(realVector col)
removeColumns(array col)
removeRow()
removeRows(integer row)
removeRows(range row)
removeRows(realVector row)
removeRows(array row)
select(real row, real col)
select(integer firstRow, integer

firstCol, integer lastRow, integer

lastCol)

selectAll()
selectAllData()
selectColumn(integer col)
selectColumns(integer firstCol,

integer lastCol)

selectRow(integer row)
selectRows(integer firstRow,

integer lastRow)

setAllBorders()
setBorderNone()
setBottomBorder()
setBottomDoubleBorders()
setColumnWidth(integer width)
setColumnWidth(integer col,

integer width)

setIndex(integer row, integer col,

HYP_Object value)

setIndex(range row, range col,

HYP_Object value)

setLeftBorder()
setOutsideBorder()
setRightBorder()
setRowHeight(integer height)
setRowHeight(integer row, integer

height)

setSelectedRowHeight(int height)

setThickBottomBorders()
setThickBottomBorders()
setThickBoxBorders()
setTopAndBottomBorders()
setTopAndBottomBorders()
setTopAndDoubleBottomBorders()
setTopAndThickBottomBorders()
setTopBorder()
textColor()
textColor(integer red, integer

green, integer blue)

textColor(integer red, integer

green, integer blue, integer

alpha)

textColor(real red, real green,

Double blue)

textColor(real red, real green,

 real blue, real alpha)

textColor(String colorName)
textStyle(boolean bold, boolean

italic)

trim()

6.3.5 Using Script App

Scripts are used to perform preprogrammed tasks. Scripts can automate tasks that are complex

and repetitive by combining different commands within the structure of programming language.

LDV Scripts are written using an interpretive language, Hyper. Refer to the Hyper Reference

Manual for detail. Example scripts can be found in the script folder.

Tool Panel

The tool panel for this app is shown below:

Menu Bar

The Script app uses the standard app menu bar. However, the Function menu has items specific

to the Table app. The Function menu for this app is described below:

The menu items for the Function menu are described in the table below:

Menu Item Description

Executes the script. The keyboard shortcut is CTRL+R.

 Formats the script by properly indenting according to syntax structure

and color codding keywords, data, comments, etc. The keyboard

shortcut is CTRL+F.

Toolbar

The Script app uses the standard app toolbar with one extra tool, the [Run] button.

The Script app tool bar is shown below:

The [Run] button of the Script app toolbar is described in the table below:

Icon Name Description

 Run Executes the script.

Inserting new Script component in a document

A new Script component can be inserted in a document using GUI or command. The following

steps will insert a Script component using GUI:

1. Select the [Insert] button from the Script tool pane.

2. Either click or click and drag in the selected open document.

If just clicked, a Script app frame of a predetermined size will be created and embedded in the

document. If clicked and dragged, the app frame size will be determined by the drag action.

A Script component can also be inserted using the following command:

createScript(<script object name>)

The string inside the angle bracket (< >) is the name the user wants to assign to the inserted

component.

Once a Script component is inserted, new script can be added, edited, and formatted or script can

be imported from a file.

An example of a Script component depicted below:

Editing

Editing scripts is similar to using any text editor.

The TUI methods for the Table app are described in the table below (in alphabetical order):

Method Description Return
alignBottom()
alignCenter()

6.3.6 Using Plot App

Plots are used to graphically represent numerical data. The Plot app can be used to produce

several different types of plots. The types of plots the Plot app can produce are listed in the table

below:

2-D Plot 3-D Plot

Scatter Plot Scatter Plot

Line Plot Line Plot

Bar Chart Mesh Plot

Pie Chart Surface Plot

Histogram

Pareto Chart

Bode Plot

Root Locus Plot

Step Response Plot

Tool Panel

The tool panel for this app is shown below:

The Plot tool panel is organized in two groups:

1. Zoom & Pan

2. Plot Types

The Zoom & Pan group contains tools related to zooming and panning and is depicted below:

The items in the Zoom & Pan group are described in the table below:

Icon Name Description

Zoom In

Used for zooming in the plot. After selecting the tool, a

single click on the plot will zoom in by 10%, pressing the

left mouse button and dragging will draw a zoom box and

releasing the left mouse button will zoom in the plot to the

zoom box. Double clicking will restore to the original

zoom level.

Zoom Out

Used for zooming out. After selecting the tool, a single

click on the plot will zoom out be 10%

Pan

Used for panning (shifting) the plot. After selecting the

tool, pressing the left mouse button, and dragging and

releasing the left mouse button will shift the plot by the

amount the mouse was dragged.

The Plot Types group contains tools creating different type of plots and is depicted below:

The items in the Plot Types group are described in the table below:

Icon Name Description

Generic Plot

Used to create an empty Plot app frame on a document. After

selecting the tool, clicking or dragging on a document will

insert a Plot app frame on the document. Clicking will

produce a predetermined sized frame and dragging will set

the set the frame size according to the amount dragged.

2D Scatter Plot

Used to insert a 2D scatter plot using the selected data from a

table.

2D Line Plot
Used to insert a 2D line plot using the selected data from a

table.

Bar Chart Used to insert a bar chart using the selected data from a table.

Pareto Chart
Used to insert a pareto chart plot using the selected data from

a table.

Histogram
Used to insert a histogram using the selected data from a

table.

Pie Chart
Used to insert a pie chart plot using the selected data from a

table.

3D Scatter Plot
Used to insert a 3D scatter plot using the selected data from a

table.

3D Line Plot
Used to insert a 3D line plot using the selected data from a

table.

3D Mesh Plot
Used to insert a 3D mesh plot using the selected data from a

table.

3D Surface Plot

Used to insert a 3D surface plot using the selected data from a

table.

A script is needed to create a plot within the document. There are several available plot types,

including line, scatter, histogram and mesh for example. The examples below will help guide

users to create custom plots, as necessary.

Plot Adornment

Visual options for the plot include changing the background color, the grid color, and linewidth

of plot.

Function Input type Function

description
Axis Labels

xLabel(label) String label Adds an x-axis label to

plot
xLabelFont(name) String name Changes the font of

the x-axis label
xLabelSize(size) Integer size Changes the size of

the x-axis label
xLabelStyle(style) Integer style Changes the style of x-

axis label
xLabelStyle(colorName) String colorName

HYP_JavaValue color

Changes the color of

the x-axis label

xAxisColor(colorName) String colorName

HYP_JavaValue color

Changes the color of

the x-axis

yLabel(label) String label Adds a y-axis label to

plot
yLabelFont(name) String name Changes the font of

the y-axis label
yLabelSize(size) Integer size Changes the size of

the y-axis label
ylabelStyle(style) Integer style Changes the style of y-

axis label
ylabelStyle(colorName) String colorName

HYP_JavaValue color

Changes the color of

the y-axis label

yAxisColor(colorName) String colorName

HYP_JavaValue color

Changes the color of

the y-axis

zlable(label) String label Adds an z-axis label to

plot
zlabelFont(name) String name Changes the font of

the z-axis label
zlabelSize(size) Integer size Changes the size of

the z-axis label
zlabelStyle(style) Integer style Changes the style of z-

axis label
zlabelStyle(colorName) String colorName

HYP_JavaValue color

Changes the color of

the z-axis label

zAxisColor(colorName) String colorName

HYP_JavaValue color

Changes the color of

the z-axis

axis(xmin, xmax, ymin, ymax) double, double, double, double Sets maximum and

minimum values for x

and y-axis

Plot Legend

showLegend() Adds legend to plot

hideLegend() Hides legend

legend(aFlag) Boolean aFlag Adds legend with a

boolean
dataName (dataNum, str) Integer data Num, String str

String data Num, String str

Sets name for specific

data set

dataName(list) HYP_ArrayList list {“a”, “b”,”c”},

dataName(listID, listVal) Hyp_ArrayList list ID, HYP_ArrayList

listVal

legendFont(name) String name Changes font of

legend
legendSize(size) Integer size Changes size of legend

legendStyle(style) Integer style Changes style of

legend
legendColor(colorname) String colorName

HYP_JaveValue color

Changes color of

legend
legendBorderColor(colorname) String colorName

HYP_JaveValue color

Changes border color

of legend
legendBackgroundColor(color) String colorName

HYP_JaveValue color

Changes background

color of legend

Plot Title

title(str) String str Adds title to plot

getTitle()

titleFont(name) String name Changes font of title

titleSize(size) Integer size Changes size of title

titleStyle(name) Integer size Changes style of title

titleColor(colorName) String colorName

HYP_JaveValue color

Changes color of title

titleBackgroundColor(color) String colorName Change color of title

background

Plot Annotations

annotate(label) String label Adding annotation to

plot

Goes to default

location, can be

dragged
annotate(label, x, y) String label, Integer x, Integer y

String label, Long x, Long y

Define location of

annotation box (box

can be dragged to

desired location
annotateFont(name) String name Changes annotation

font
annotationSize(size) Integer size Changes annotation

size
annotationStyle(style) Integer style Changes annotation

style
annotationColor(colorname) String colorName

HYP_JaveValue color

Changes the color of

the word in the

annotation
annotationBackgroundColor(color) String colorName

HYP_JaveValue color

Changes annotation

background color
Plot Grids

majorGridColor(colorname) String colorName

HYP_JaveValue color

Changes the color of

the major gridline

minorGridColor(colorname) String colorName

HYP_JaveValue color

Changes color of

minor gridline
gridColor(colorName) String colorName

HYP_JaveValue color

Changes color of grid

on plot
setGridColor(-------------------

-----)

gridOn() Adding gridlines on

plot
gridOff() Hiding gridlines on

plot
horGridOn() Adding horizontal

gridlines
horGridOff() hiding horizontal

gridlines
verGridOn() Adding vertical

gridlines
verGridOff() Hiding vertical

gridline

Point/Line Adornment

lineColor(linenum, red, green,

blue)
Integer lineNum, integer red, green, blue

Integer lineNum, double red, green, blue

Integer lineNum, String colorName

Integer lineNum, HYP_JavaValue

Changes line color

using line number

Integer input 0 - 255
lineColor(lineName, red, green,

blue)
String lineName, integer red, green, blue

String lineName, double red, green, blue

String lineName, String colorName

String lineName, HYP_JavaValue

Changes line color

using line name

Integer input 0-255
lineColor(list) HYP_ArrayList list

lineColor(listID, listVal) HYP_ArrayList listID, HYP_ArrayList

listVal

pointColor(pointNum, red, green,

blue)
Integer pointNum, integer red, green, blue

Integer pointNum, double red, green, blue

Changes color of point

using point number

and color fraction
pointColor(pointNum, red, green,

blue, alpha)
Integer pointNum, integer red, green, blue,

alpha

Integer pointNum, double red, green, blue,

alpha

Changes point color

using point number

Integer input 0 - 255
pointColor(pointNum, colorName) Integer pointNum, String colorName

Integer pointNum, HYP_JaveValue color

Changes point color

using point number

and color name
pointColor(pointName, red,

green, blue)
String pointName, integer red, green, blue

String pointName, double red, green, blue

Changes point color

using point name

Integer input 0-255
pointColor(pointName, red,

green, blue, alpha)
String pointName, integer red, green, blue,

alpha

String pointName, double red, green, blue,

alpha

Changes point color

using point name

Alpha = makes

something transparent

(example alpha = 50,

50% transparent)
pointColor(pointNum, colorName) String pointName, String colorName

HYP_JavaValue color

pointColor(listID, listVal) HYP_ArrayList listID, HYP_ArrayList

listVal

lineType(lineNum, type) Integer lineNum, String type

String lineNum, String type

lineType(type) String type Changes line type

lineType(list) HYP_ArrayList list

lineType(listID, listVal) HYP_ArrayList listID, HYP_ArrayList

listVal

pointType(pointNum, type) Integer pointNum, String type Changes point type

using point number
pointType(pointName, type) String pointName, String type Changes point type

using point name
pointType(list) HYP_ArrayList list ?

pointType(listID, listVal) HYP_ArrayList listID, HYP_ArrayList

listVal

?

lineWidth(lineNum, width) Integer lineNum, Integer width

Integer lineNum, Double width

Changes line width

sing line number
lineWidth(listID, listVal) HYP_ArrayList listID, HYP_ArrayList

listVal

pointSize(pointNum, size) Integer pointNum, Integer size Changing point size

using point number
pointSize(pointNum, width) Integer pointNum, Double width Changing point width

using point number
pointSize(pointName, width) String pointName, integer width

String pointName, double width

Changing point width

using point name
explode()

explode(explodes) Integer explodes

Double explodes

HYP_RealVector explodes

setPieCircle()

setPieOval()

Plot Adornment

setBackgroundColor(colorName) String colorName

Plot type

SetPlotType(PlotType plotType Which function

name??

Color

There are 3 ways to describe the desired color of an element: name, integer, percent. Names of

the colors that can be used are listed below in table ____.

To describe a color using integers, amounts of blue, red, and green from 0 to 255 are chosen. For

example, purple is 112 blue, 113 red, and 0 green.

Describing a color using fractions (or percentages) is similar to using integers. Amounts of blue,

red, and green from 0.0 to 1.0 are inputted. Purple is made up of 50% blue, 50% red, and 0%

green.

Items on a plot with the ability to change colors include plot background, grid color, axis lines,

and all fonts.

Function Input type Function description

General commands

Function Plot Types

PlotType Scatter

Line

Bode

Root Locus

Step

Bar

Pareto

Histogram

Pie

Scatter

Line

Mesh

Surface

PlotType2D Scatter

Line

Bode

Root Locus

Step

Bar

Pareto

Histogram+

Pie

PlotType3D Scatter

Line

PlotTypeSurf Mesh

Surface

Sample scripts that uses the functions include:

plotline2.hyp

lp1.hyp

dp.hyp

6.3.6.1 Line Plot Example

An example of a line plot is given below.

x=-3.0:0.5:3.0;

y=x^2

z=1/x

print(x)

print(y)

print(z)

createPlot("PlotA");

PlotA.plotLine(x,y);

PlotA.plotLine(x,z);

This code can also be found in the scripts folder in the file named “plotline2.hyp”.

In this piece of code, the variables are first defined for the software to read. The independent

variable here is x, which is defined using the format:

x=<left endpoint>:<increment level>:<right endpoint>;

The x values here start at -3.0 and end at 3.5, incrementing by 0.5.

There are two dependent variables, y and z, which are defined after the independent variable x is

defined.

The print function is not necessary to plot the data but used to display the entered data in an array

format in the console.

The command createPlot("PlotA") is used to create a new plot window called “PlotA”.

This is the plot window with axes where the data will be plotted.

The command PlotA.plotLine(x,y); is used to plot the variables x and y in the plot

window PlotA, with x in the horizontal axis and y in the vertical axis. A similar line is used to

plot x and z. The result will be seen in the screenshot below.

Data 1 is the first line, which in this case is x vs y.

Data 2 is the second line, which in this case is x vs z.

To make the graph smoother, the increment level would have to be decreased to make the data

points closer together. Since this is a line plot, a discontinuous function like 1/x would still have

the points connected as shown above.

6.3.6.2 Line Plot Decoration Example

After plots are drawn, they can be decorated using colors and symbols. The decorations work

independently from the data. Both lines and plot windows can be decorated, and they also work

independently of each other.

6.3.6.2.1 Line Decoration

An example of a line decoration script is given below.

exec("dataline")

createPlot("PlotA")

PlotA.plotLine(x,y)

PlotA.plotLine(x,z)

PlotA.lineWidth(2,5)

PlotA.title("Title")

PlotA.xLabel("Year")

PlotA.yLabel("Doller")

PlotA.lineWidth(1,5)

PlotA.lineType(1,"dash_dot")

PlotA.lineType(2,"solid")

PlotA.lineColor(1,"magenta")

PlotA.pointType(1,"star")

PlotA.pointType(2,"diamond")

PlotA.pointSize(1,25)

PlotA.pointSize(2,25)

PlotA.pointColor(1,"blue")

PlotA.pointColor(2,"red")

This code can also be found in the scripts folder in the file named “lp1.hyp”.

In this plot, PlotA is first plotted using data previously entered – in our case, it is plotline2.hyp.

The general formatting for line decoration is

<PlotLetter>.<function>(<parameters>)

The functions seen in this graph are as follows:

title (“<title>”)

Creates a title for the entire plot.

xLabel (“<label>”)

Labels the horizontal axis for the plot.

yLabel (“<label>”)

Labels the vertical axis for the plot.

lineType (<plot number>, <type>)

Changes the type of a specified plot line. Examples: solid, dash, dash_dot.

lineWidth (<plot number>, <width>)

Changes the width of a specified plot line. A higher number means a greater width.

lineColor (<plot number>, <color>)

Changes the color of a specified plot line.

pointType (<plot number>, <type>)

Changes the point type of a specified plot line. Examples: circle, star, diamond.

pointSize (<plot number>, <size>)

Changes the point size of a specified plot line. A higher number means a greater size.

pointColor (<plot number>, <color>)

Changes the point color of a specified plot line.

The functions and parameters in the code output a plot that looks like the screenshot below.

6.3.6.2.2 Plot Decoration

An example of a plot decoration script is given below.

PlotA.titleSize(36)

PlotA.titleFont("Algerian")

PlotA.titleColor("blue")

PlotA.xLabelSize(30)

PlotA.xLabelFont("forte")

PlotA.xLabelStyle("red")

PlotA.yLabelSize(24)

PlotA.yLabelFont("broadway")

PlotA.yLabelStyle("green")

PlotA.backgroundColor("pink")

PlotA.gridColor("cyan")

PlotA.minorGridColor("yellow")

This code can also be found in the scripts folder in the file named “dp.hyp”.

As seen in the code, adding “size”, “font” or “color” after the title, xLabel and yLabel functions

seen previously changes the size, font and color of those elements of the plot, by specifying the

parameters in parentheses.

“PlotA.backgroundcolor” changes the background color of Plot A to pink, in the parentheses.

“PlotA.gridcolor” changes the grid color of Plot A to cyan, and “PlotA.minorGridcolor” changes

the minor grid color of Plot A to yellow.

The results of the code are seen in the screenshot below.

The line decorations are carried over from the previous program, and have no bearing on the plot

decoration script.

6.3.6.3 Multiple Plots & Scatter Plot Examples

6.3.6.3.1 Scatter Plot

A scatter plot is very similar to a line plot. An example of a scatter plot is given below:

x=-3.0:0.5:3.0;

y=x^2

z=1/x

createPlot("PlotA");

PlotA.plotScatter(x,y);

PlotA.plotScatter(x,z);

It is seen that the code is very similar to that of a line plot, with the only difference being that the

code “.plotLine” is replaced with “.plotScatter”.

The software still uses variable data to plot the points in the same way as a line plot. The

difference is visual – instead of joining the points, the points are plotted without having any lines

to join them.

The code above creates an output that looks like the picture in the next page.

6.3.6.3.2 Multiple Plots

Multiple plot diagrams can be drawn in the same window. An example is seen below.

x=-3.0:0.5:3.0;

y=x^2

z=1/x

createPlot("PlotA");

PlotA[1,1].plotScatter(x,y);

PlotA[1,2].plotLine(x,z);

The difference seen here is the added [<integer> , <integer>] added immediately

after “PlotA”. The software treats the plot window PlotA as a grid with rows and columns. The

first integer corresponds to the row number and the second integer corresponds to the column

number. In the above example, [1,2] corresponds to a plot being drawn in the first row and the

second column.

The code above outputs a plot window that looks like this:

If the plots were to be stacked on top of one another instead of plotted side by side, the location

for the second plot would be changed from [1,2] to [2,1]

PlotA[1,2].plotLine(x,z);

would be changed to:

PlotA[2,1].plotLine(x,z);

This means that the plotLine would be drawn in the second row and the first column of the

“grid”, as seen below.

While the above examples show very “structured” examples where there are no empty locations

on the grid, it does not necessarily have to be so. There can also be multiple plots in the same

graph as seen in previous examples, while also being different plot types. An example of a

“complex” plot window is shown below with its given code.

x=-3.0:0.5:3.0;

y1=x^2

y2 =x^3

z1=1/x

z2=x^2 + x + 1

createPlot("PlotA");

PlotA[1,1].plotScatter(x,y1);

PlotA[1,1].plotLine(x,z1);

PlotA[1,2].plotLine(x,y2);

PlotA[3,3].plotScatter(x,z2);

6.3.6.4 Bar Plot Example

A bar plot is used to plot numerical data against string labels. An example of a bar plot is given

below.

bar_y = [10,20,30,40,50,60,75,55,45,25,15,5]

bar_x =

{"abc","def","ef","gh","ijkl","mno","pqr","st","uvw",

"xyz", "a123", "b456"}

createPlot("bar")

bar.plotBar(bar_x, bar_y)

bar.title("Bar Plot")

This code can also be found in the scripts folder in the file named “plotbar.hyp”.

“bar_y” is a variable created with a list that contains the data points for the vertical axis. The

list of data points for the vertical axis must always be integer values. The elements in the list

must be bounded by [].

“bar_x” is a variable created with a list that contains the data points for the horizontal axis. The

list of data points for the horizontal axis must always be integer values. The elements in the list

must be put in “ “ (quotation marks) and the elements must be bounded by { }.

The vertical and horizontal variables must be equal in length (i.e. having the same number of

elements) for the bar to be drawn. The data will be plotted exactly as typed in the list. For

example, the list {“ab”, “cd”, “ef”} will be plotted with ab as the leftmost bar label, cd

as the middle, and ef as the rightmost bar. The list of numbers will correspond directly to the list

of strings. The list [2, 4, 6] will have 2 represent ab, 4 represent cd, and 6 represent ef.

The command “createPlot(“bar”)” creates a new plot window titled “bar”.

The command “bar.plotBar(bar_x, bar_y)” plots bar_y against bar_x in a bar

plot. In the parentheses, the first variable is always plotted on the horizontal axis and the second

variable is plotted on the vertical axis. The overall format is always

“bar.plotBar(<horizontal variable>,<vertical variable>)”.

The command “bar.title(“Bar Plot”)” titles the plotted data as “Bar Plot”.

The result of this piece of code can be seen in the following page.

This is the result of the code seen in the previous page.

6.3.6.5 Pareto Plot Example

A pie plot is used to plot numerical data in a bar chart with descending numbers, and a

cumulative percentage line plot on top.

y=[10,20,30,40,50,40,30,20,10]

x=[1,2,3,4,5,6,7,8,9]

l={"a","b","c","d","e","f","g","h","i"}

createPlot("pareto")

pareto.plotPareto(l,y)

pareto.title("Pareto Plot")

This code can be found in the scripts folder in the file named “plotpareto.hyp”.

The command “y=[10,20,30,40,50,40,30,20,10]” and

“x=[1,2,3,4,5,6,7,8,9]” create lists of numerical data points that will be plotted. The

frequencies and cumulative percentages are calculated automatically and are seen on the chart.

The command “l={"a","b","c","d","e","f","g","h","i"}” creates a list of

labels for the bars on the plot. They are fixed – any numerical changes in the data set will not

change the order of the labels.

The command “createPlot(“pareto”)” creates a new plot window named “pareto”.

The command “pareto.plotPareto(l,y)” creates a pareto chart in the “pareto” plot

window using the specified parameters. “y” is the list of data points that will be plotted on the

chart. “l” is the list of labels used for the bar chart. The command “pareto.title("Pareto

Plot")” labels the plot with the title “Pareto Plot”.

The end result looks like the image below.

6.3.6.6 Histogram Plot Example

A histogram plot is used to plot the distribution of numerical data. An example of a histogram

plot code is given below.

y=[10,20,30,40,50,40,30,20,10]

x=[1,2,3,4,5,6,7,8,9]

createPlot("hist")

hist.plotHist(x,y)

hist.title("Histogram")

6.3.6.7 Pie Plot Example

A pie plot is used to plot numerical data on a pie chart as percentages. An example of a pie plot

code is given below.

x=[100,200,400,500]

createPlot("pie")

pie.plotPie(x, true, 10.0)

This code can be found in the scripts folder in the file named “plotpie.hyp”.

The command “x=[100,200,400,500] creates a list of numerical data points that will be

plotted on the chart. The percentages that are seen on the chart are calculated automatically.

There can be a maximum of 12 data points, after which an incomplete pie chart is plotted using

the first 12 specified data points.

The command “createPlot(“pie”)” creates a new plot window named “pie”.

The command “pie.plotPie(x, true, 10.0)” creates a pie chart in the “pie” plot

window using the specified parameters. “x” is the list of data points that will be plotted on the

chart. “true” specifies whether the chart resizes disproportionately when the window is resized

(if it was “false”, the pie chart would always remain a circle). 10.0 specifies the distance

between the distinct parts of the pie chart (0.0 would mean that there would be no gaps between

the parts).

The above code gives a result that looks like this:

As an example, this is a piece of code that changes some of the input parameters as discussed

previously.

 x=[50,50,75,75,100,100,125,125,150,150,175,175,200,200]

 createPlot(“pie”)

 pie.plotPie(x, false, 0.0)

INCOMPLETE

6.3.6.8 Bode, Step Response, and Root Locus Plots

Three types of transfer functions can be plotted: bode plot, step response plot and root locus plot.

They all use polynomials in the numerator and denominator which can be specified by the user.

The step plot is used to display the output of a step response function. The bode plot plots the

phase angle and amplitude of a function against its frequency. The root locus plot plots the root

of a 2nd order differential equation on a complex plane.

Polynomials can be written in two formats.

n1 = #1, 0.1, 7.5#;

d1 = #1, 0.12, 9.0, 0, 0#;

The command above will create a polynomial n1 that equals x2 + 0.1x + 7.5. The leftmost

constant is the coefficient for the highest exponent of the polynomial. The polynomial d1 equals

x4 + 0.12x3 + 9x2.

n2 = polynomial([9]);

d2 = polynomial([1,2,9]);

The command above will create a polynomial n2 that equals 9. The polynomial d2 equals

x2 + 2x + 9.

To create a bode plot, the following command can be used.

createPlot("bode")

bode.plotBode(n2,d2)

This creates a plot window “bode” and plots a bode plot using n2 and d2. The first parameter

taken by the plotBode function is the numerator and the second parameter taken is the

denominator. Similarly, a step plot can also be plotted.

createPlot("step")

step.plotstep(n2,d2)

This creates a plot window “step” and plots a step plot using n2 and d2. The first parameter taken

by the plotstep function is the numerator and the second parameter taken is the denominator.

A similar process is also used for a root locus plot:

createPlot("PlotRL1")

PlotRL1.plotRootLocus(n1,d1)

PlotRL1.axis(-0.6,0.6,-6.0,6.0)

This creates a plot window “PlotRL1” and plots a root locus plot using n2 and d2. The first

parameter taken by the plotRootLocus function is the numerator and the second parameter taken

is the denominator. The additional third line is used to define the real and imaginary axes of the

plot. The code follows the following pattern:

The results of all plots are shown below.

Bode Plot

Step Plot

Root Locus Plot

6.3.6.8.1 Control Plot

There are two scripts in the scripts folder called “plotcontrol4” and “plotcontrol2x2”.

The plotcontrol4 creates four separate transfer function plots using the same data. The

plotcontrol2x2 script creates a single plot window with the four plots in a 2 by 2 grid. The data

points are created in the same way as the other examples, and the 2 by 2 grid is created like the

previous example in 5.1.4.3.2.

The 2 by 2 grid looks like the image below.

6.3.6.9 3D Line Plot

A 3D line plot is used to plot data values on a three-dimensional axis. It is similar to the line plot

except there is an added dimension.

An example of a 3D line plot data is given below:

t = 0.0:PI/5.0:10.0*PI

n = t.length

x = zeros(n)

y = zeros(n)

for i in 1:n

{

 x[i] = sin(t[i])*5.0

 y[i] = cos(t[i])*5.0

}

This particular example creates a helix on the axes x, y and t.

The line t = 0.0:PI/5.0:10.0*PI creates a list of datapoints for the t axis, starting at 0 and

ending at 10*PI, with increments of PI/5 in between.

The line n = t.length creates a variable n with the value that is the number of data points in t.

The lines that follow create lists of datapoints for the x and y axes, with a list of “n” zeroes.

The for loop that follows iterates through the numbers one through n, to populate the lists with

the sine and cosine values. The sines of all values in t are written into x, and the cosines of all

values in t are written into y.

createPlot("line3d")

line3d.plotLine3d(x,y,t)

The two lines above are written after the data is created and are used to draw the plot onto the

document. The first line creates a new plot named “line3d”, and the second line plots the data

onto the plot called line3d. The parameters of the function are ordered as x, y and z axes. In this

example, the data points in x are plotted on the x axis, y on the y axis, and t on the z axis.

The resulting plot looks like the image below.

3D plots can be moved, rotated and scaled. Left clicking on the plot and moving the cursor will

rotate the plot in that direction. Right clicking on the plot and moving the cursor will pan the plot

in that direction.

Additionally, there are sliders to adjust the axis positions and scaling for the plot. They can be

accessed by clicking on “Content” to the right of the Document Pane.

The Content tab looks like the image to the left.

The Uniform Scale slider uniformly scales the size of all the axes.

The sliders in the Non-Uniform Scale section scale only the x, y

and z axes respectively.

The sliders in the Translation Offset section pan across the axis

that is labeled next to the slider.

The Show Grid checkbox shows the grid behind the plotted line

when checked.

The Show Edge Axis System checkbox shows the x, y and z axes

on the edge of the plot when checked.

The Show Center Axis System checkbox shows the x, y and z

axes through the origin of the plot when checked,

The Auto Rotate checkbox automatically rotates the entire plot

about the origin through the y axis at a slow pace when checked.

other sliders

6.3.6.10 3D Mesh and 3D Surf Plot

The 3D Mesh and Surface plots are used to plot data points on a three-dimensional axis. While in

a line plot, the data is plotted as a line, the surface and mesh plots are used to draw the “surface”

of the plot. While the surface plot shows a “solid” surface, the mesh plot divides the surface plot

into unit grids.

An example to show 3D mesh and surface plots is given below:

x = -8:0.5:8;

y = x;

numOfPoints_x = x.length

numOfPoints_y = y.length

s = time();

z = zeros(numOfPoints_x,numOfPoints_y)

for i in 1:numOfPoints_x

{

 for j in 1:numOfPoints_y

 {

 R = sqrt(x[i]^2 + y[j]^2) + 1.0e-12;

 z[i,j] = sin(R)/(R*0.1) + 1.0;

 }

}

e = time();

d = e-s;

The above code can also be found on the “datasurf.hyp” file. The code is used to generate data

for a Mexican hat function on the x, y and z axes using the x, y and z variables respectively.

A mesh plot can be drawn using the code:

createPlot("mesh")

mesh.plotMesh(x, y, z)

A surface plot can be drawn using the code:

createPlot("surf")

surf.plotSurf (x, y, z)

A 3D Mesh plot looks like the image below:

A 3D Surface plot looks like the image below:

Both plots can be scaled and rotated like the 3D line plot.

6.3.7 Console

The console is used to type and run commands, the results of which can be seen in the document

pane or the console window.

6.3.7.1 Console Layout

6.3.7.1.1 Data notation

The console can display numerical answers in regular, scientific or engineering notation. To

change this, click on the drop-down menu next to “Notation” and select your preferred notation.

The regular notation will simply display a decimal number. The scientific notation will display

the number with a single digit decimal and exponents of ten. The engineering notation will

display the number with a decimal and exponents of 10, where the exponents are multiples of 3.

6.3.7.1.2 Built in commands

The console has several built in commands to perform certain tasks. They can be found in the far

right corner of the console pane by clicking on “Commands …” to get to a drop down menu.

pwd will display the path of the present working directory of the console. The working directory

is the folder from which scripts can load by default without typing the entire path in the console.

cd will change the working directory to the parent folder of the original working directory and

then display the path on the console.

ls will display the contents of the working directory on the console.

ws will display the present variables in the console. That includes any defined variables (see

basic algebra below) and the default variables E and PI.

wsd will display the present variables and their data types (real, integer, imaginary, complex

etc.)

wsv will display the present variables, their data types and their numerical values.

wsf will display all the available functions and their data types in parentheses.

wsfd will display all the available functions and their data types in a separate column.

wsl

clear screen will clear anything displayed on the console.

clear var will clear any created variables. Default variables will stay.

clear fun will clear any custom functions that have been created through scripts. Default

library functions will stay.

clear all will clear everything including the display, variables and functions.

6.3.7.2 Console Functions

6.3.7.2.1 Basic Algebra

The console can be used to define variables and perform calculations using those variables. For

example, to do a simple addition:

1. Type in a = 3. This defines a variable a and gives it a constant value of 3.

2. Type in b = 5. This defines a variable b and gives it a constant value of 5.

3. Type in c = a + b. This defines a variable c and makes it equal to the sum of a and b. The

value of c will change if the values of a and b are also changed.

Similar calculations can be done to subtract, multiply, divide, create exponents etc. Reference for

all of the available functions can be found in the Hyper Language Reference.

6.4 Saving a Document

To save a new document, go to Document > Save > As.. on the toolbar, as shown in the image

below.

That will show the save window (in the form of a file browser), and the file can be saved in the

preferred location with the file format .ldv. The .ldv file will contain all texts, tables, scripts etc.

created within the document.

To save an existing document, click on the Save icon.

6.4.1 Saving app documents

The texts, tables and scripts created within the document can be saved separately and then

imported into different documents. To do so, go to File > Export As… on the internal document

that is being saved. (Alternatively, the keyboard shortcut Ctrl + Shift + S can also be used)

That will show the save window (in the form of a file browser), and the file can be saved in the

preferred location. Texts will be saved in .text format, tables will be saved in .table format, plots

will be saved in .plot format, and scripts will be saved in .hyp format.

